
ASL761 - Class Presentation
Understanding Model Evaluation and Validation

Puneet Sharma
15 October, 2019

Centre for Atmospheric Sciences, IITD



Table of contents

1. Introduction

2. Evaluation using observations

3. Next step: Identifying model errors

4. Model-Observations comparison — Apple-Orange problem

5. Conclusion

1



Introduction



Why evaluate climate models

https://news.ucar.edu/sites/default/files/news/2011/predictFlow2.jpg
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Why evaluate climate models

• Evaluation
– Process of understanding a model and how well it works.

– Key objective is to quantify statistically how good or bad the model is against the
observations by comparing distributions.

– Depends on the purpose and experimental design of the simulations.

– We evaluate models to have a better understanding of different aspects of climate
model.

• Validation
– Process of ascertaining or testing the truth of a model.

– Generally done through recreating known past climate and comparing with past
observed data.

– Not the perfect truth — models are incomplete representations of reality.
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Evaluation using observations



Issues with observations

• Observations are not absolute truth.

• Observations can have missing/inaccurate information — depends on

– Duration of records.

– Errors arising due to

* Systematic error — Calibration and instrument issues thus leads to consistent departures from
true value.

* Random error — Unpredictable disturbances thus leads to outliers in the observations.

– Erroneous retrieval algorithms.

– Artifacts in satellite retrievals.
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Issues with observations

small errors in the energy budget in such a model. We need to evaluate models for a
purpose and assess whether they are useful for a particular purpose. The weather
prediction model that does not conserve energy may be fine for 48-h forecasts, but it
is likely not a great climate model.

Evaluation of models also involves comparison of different models. There are
about 25 different climate models of varying complexity that help inform our
understanding of global climate. In Chap. 11, we discuss details of how these
models are related or independent, but they represent the best estimates of the
climate system. Each estimate will be different since the representation of the
system is quite different. We can also evaluate models against each other.

9.1.2 Observations

For models, the primary evaluation method is to evaluate the processes or results of
models against observations. Observational uncertainty is a key problem.
Observations are biased due to sampling uncertainty (gaps in records), as illustrated
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Fig. 9.1 Sampled distributions. Points representing individual observations are randomly sampled
from a distribution with a mean of 100 and a standard deviation of 2. a Sample with 25 points.
b The probability distribution function (PDF) of these points. c Same distribution with a sample of
3000 points. d The PDF of these points
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Uncertainty in observations

• Evaluation of climate models also depends on how well do we understand the uncertainty in
observations.

intervals using daily values in the time
series. Generally, positive sensitivities
indicate that N increases with τa, an
indicator of the first aerosol indirect
effect. We note at this point that there
may be limitations to this metric, which
are further discussed in section 3.4.

Figure 6a shows ΔlnN/Δlnτa in SAF
during the entire analysis period and
separately for each season (see the
supporting information for numerical
values and the number of daily samples
used to compute each sensitivity). For
the entire period (“ALL” in Figure 6), the
sensitivity calculated using observations
is positive, indicating that N increases
with τa. This sensitivity calculated using
satellite-simulated AM3 results is
statistically indistinguishable from the
observations. CAM5 has higher
sensitivity than observations, while
ModelE2 has a lower sensitivity that is
statistically indistinguishable from zero.
Since the time series are not
deseasonalized, it is likely that the
sensitivities in ALL include covariation in
N and τa that are not causal. For this
region, JJA provides the most
statistically robust seasonal result
because (1) τa widely varies and (2) a
higher fraction of grid cells have liquid
cloud fraction ≥ 30% and therefore each
spatial mean is calculated using more
data points (see the supporting
information). ΔlnN/Δlnτa during JJA
calculated using AM3 model values
shows higher sensitivity than
observations. The sensitivity of CAM5 is
also higher than observations, but the
two are not statistically distinguishable.

ΔlnN/Δlnτa in this region for ModelE2 has large error bars due to the relatively low number of days containing
grid cells with liquid cloud fraction ≥ 30%.

ΔlnN/Δlnτa for SEA is shown in Figure 6b. For the entire analysis period, fractional differences between
observed and modeled sensitivities are similar in SEA and SAF. Absolute sensitivities are roughly 2 times
larger in SEA versus SAF. This higher sensitivity in SEA can be qualitatively observed in the time series (Figure 5);
annual cycles of τa have lower amplitude in SEA versus SAF, while for N the annual cycles are of similar
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Figure 6. Total sensitivity of ln(N) to ln(τa) for MODIS observations and
the three climate models in (a) SAF and (b) SEA. Sensitivities are com-
puted using the time series for N and τa shown in Figure 5. See the
Figure 5 caption for more details. Sensitivities are shown for the entire
period (1 January 2007 to 1 January 2009) and individually by season.
Numerical values are in the supporting information. Uncertainty esti-
mates are calculated as 95% confidence interval from daily values.

Figure 5. Spatial mean time series of cloud and aerosol properties from MODIS observations and the three climate models
for (a) SAF and (b) SEA. For cloud properties, pixels with liquid cloud fraction < 30% are screened to reduce noise in the
retrieval algorithm for N. The exception is the top panels in Figures 5a and 5b, which show unscreened values for reference.
All model values are dailies extracted from the time step corresponding to noon local time in each region, similar to the
observed Aqua overpass time of 1330 h local. All modeled cloud properties are satellite-simulated and in-cloud values. N
was computed using equation (5) with both satellite-simulated model values and observations. Corresponding values of
cloud thickness H were computed using equation (4) for both models and observations.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD021722

BAN-WEISS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 10,891
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Issues with observations

Understanding the uncertainty in the observations, including
the retrieval algorithms that are used for observations, and
the difference between what the observations and the

model represent is critical for evaluation.
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Next step: Identifying model
errors



Identifying model errors

• Majority of errors in model come from the modeled physics — parameterized
processes.

• Model errors (model uncertainty) can arise due to reasons such as

– Internal variability
– Simplistic model physics
– Errors in land-sea coupling in the model.
– Compensating errors

• Once the source of model error pertaining to a specific process is known, the next
step is model improvement.

8



Model-Observations comparison
— Apple-Orange problem



Conceptualizing satellite simulator

• Large uncertainty persists in simulation of cloud cover and cloud properties (Bony
and Dufresne, 2005).

• Satellites are the first source of global observations.

• Direct comparison between model and observations inconsistent (Apple-Orange
comparison !) since

– Satellite derives the observations through processing radiance values and model
calculates atmospheric variables through prognostic and diagnostic equations.

– The assumptions inherent in the retrieval algorithms of satellite (viewing geometry,
sensors’ sensitivity, vertical overlap of cloud layers etc.) are absent in climate models

• To overcome this problem, satellite simulator was devised
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What is COSP ??

• World Climate Research Programme (WCRP) came up with Cloud Feedback Model
Intercomparison Project (CFMIP) whose objective was to improve the understanding
and evaluation of clouds, cloud feedbacks and changes in regional-scale circulation
and precipitation.

• CFMIP community has developed an integrated satellite simulator, the CFMIP
Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011).

• COSP is a software tool that enables the simulation of data from several
satelliteborne active and passive sensors from model variables.

• It facilitates the use of satellite data to evaluate models in a consistent way
(Apple-Apple comparison !).
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Apple-Apple comparison

• COSP diagnoses from model outputs some quantities (e.g. infrared and visible
radiances, radar reflectivities, lidar backscattered signals) that would be observed
from space if satellites were flying above an atmosphere similar to that predicted by
the model.

• Diagnostics about the presence and the properties of clouds can then be applied
consistently to observations and to simulator outputs, ensuring a consistent
model-data comparison.

• COSP includes several simulators under the same interface and facilitates the
implementation of a range of simulators in models (ISCCP, MODIS, MISR, CALIPSO
etc.).

• Facilitates model intercomparison, not only model–satellite comparison (e.g.,
comparisons of cloud properties simulated by GCMs and CRMs).
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What is COSP ??

So COSP is basically what satellites would see if they were
inside the climate model !!
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COSP use case

using the MODIS and MISR t distributions from CAM4

and CAM5 (not shown).

3) CAM CLOUD BIASES AS A FUNCTION OF

SATELLITE, CLOUD OPTICAL DEPTH, AND

CLOUD-TOP HEIGHT

We reinforce and expand on the findings shown in

Figs. 1–3 by examining global annual cloud fraction bias

and RMSE as a function of satellite, t, and cloud-top

height in Fig. 4. Figure 4 shows robust and ubiquitous

improvement from CAM4 to CAM5 for all observed

versus simulator-diagnosed global annual mean cloud

fraction comparisons.

The top row of Fig. 4 compares total cloud fraction for

‘‘all cloud,’’ optically intermediate cloud (3.6 , t , 23,

following the definitions in Z05), and optically thick

cloud (t . 23, again following Z05). As in Fig. 2, total

cloud deficits in both versions of CAM are evident,

but cloud deficits are smaller in CAM5 than in CAM4.

As in Fig. 3, CAM4 has too little optically intermediate

cloud and too much optically thick cloud, while CAM5

is a much closer match to the observations.

The vertical distribution of clouds exerts important

controls on the longwave energy budget. Thus, we next

use Fig. 4 to examine the contribution of high cloud, mid

cloud, and low cloud to total cloud amounts and model

biases. In both observations and the models, high cloud

and low cloud contribute almost equally to the total cloud

fraction, while mid cloud contributes less. Both CAM4

and CAM5 underestimate cloud fraction at all heights,

a bias that primarily results from an underestimation of

low thin cloud. High, mid, and low cloud fraction biases

are similar to their total cloud fraction equivalents and

therefore all three contribute to bias reductions from

CAM4 to CAM5; however, ‘‘all cloud’’ and optically in-

termediate cloud bias reductions result mainly from in-

creases in low cloud amount, while optically thick total

cloud bias reductions result mainly from decreases in

high-topped cloud amount.

Figure 5 provides a spatial context for Fig. 4 by showing

maps of CALIPSO cloud fraction bias as a function of

height. The figure shows that both models, but especially

CAM4, underestimate CALIPSO cloud fraction at all

cloud heights in many cloud regimes. Both models share

a deficit in low cloud amount on the eastern sides of

subtropical oceans at locations where overcast stratocu-

mulus typically transitions to broken trade cumulus

clouds. While model cloud deficits are common, there are

some regional exceptions. For example, CAM4 has ex-

cessive high cloud fractions in the TWP, a regional bias

that is improved in CAM5 both in the CALIPSO high

cloud fraction bias and in the LWCF bias (Fig. 1).

To identify the regions that contribute to changes in

the optically thick cloud from CAM4 to CAM5, Fig. 6

shows maps of MISR optically thick low-topped and

MODIS optically thick high-topped cloud observations

and model bias. As in Fig. 4, decreases in optically thick

FIG. 3. Global column-integrated cloud optical depth (t) distributions: (a) MISR, MODIS, and ISCCP from

satellite observations, CAM4, and CAM5, (b) ISCCP from CAM4 and CAM5 at both 0.98 3 1.258 and 1.98 3 2.58

horizontal grid resolutions. Below t5 3.6 there are large intersatellite differences in cloud fraction due to the dif-

ference in detection and treatment of cloud edges and subpixel clouds. Observational agreement below t5 1.3 is

especially poor (see P12, Fig. 4) and is therefore not plotted in (a). CAM t distributions are accumulated over model

columns and include the subgrid-scale variability implied by partly cloudy layers.

1 AUGUST 2012 K A Y E T A L . 5197
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COSP use case

Evolutions of CAM-CESM1 

Model CCSM3 
( 2004 ) 

CCSM3.5  
( 2007 ) 

CCSM4 
( Apr 2010 ) 

CESM1 
( Jun 2010 ) 

Atmosphere CAM3 (L26) CAM3.5 (L26) CAM4 (L26)  CAM5 (L30) 

Boundary Layer 
Turbulence 

Holtslag-Boville (93) 
Dry Turbulence 

Holtslag-Boville  Holtslag-Boville  Bretherton-Park (09) 
UW Moist Turbulence  

Shallow 
Convection Hack (94) Hack  Hack Park-Bretherton (09) 

UW Shallow Convection 

Deep 
Convection 

Zhang-McFarlane (95) 
Zhang-McFarlane 

Neale et al.(08) 
Richter-Rasch (08) 

Zhang-McFarlane 
Neale et al.(08) 

Richter-Rasch (08) 

Zhang-McFarlane 
Neale et al.(08) 

Richter-Rasch (08) 

Cloud 
Macrophysics 

Zhang et al. (03) Zhang et al. 
with Park & Vavrus’ mods. 

Zhang et al. 
with Park & Vavrus’ mods. 

Park-Bretherton-Rasch (14) 
Revised Cloud Macrophysics 

Stratiform 
Microphysics 

Rasch-Kristjansson (98) 
Single Moment 

Rasch-Kristian. 
Single Moment 

Rasch-Kristian. 
Single Moment 

Morrison and Gettelman (08) 
Double Moment 

Radiation / Optics  CAMRT (01) CAMRT CAMRT RRTMG 
Iacono et al.(08) / Mitchell (08) 

Aerosols Bulk Aerosol Model 
(BAM)  BAM  BAM Modal Aerosol Model (MAM) 

Liu & Ghan (2009) 

Dynamics Spectral Finite Volume (96,04) Finite Volume Finite Volume 

Ocean POP2 (L40) POP2.1 (L60) POP2.2 - BGC POP2.2  

Land CLM3  CLM3.5  CLM4 - CN CLM4  

Sea Ice CSIM4 CSIM4 CICE CICE 

http://www.cesm.ucar.edu/events/wg-meetings/2015/presentations/amwg/park2.pdf 14
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Conclusion



Summary

• Evaluation and validation of climate models is important in order to improve the
capabilities of weather forecasting and climate projections.

• Evaluating climate models is a task specific exercise i.e. specific aspects of climate
model are evaluated against specific observations.

• While evaluating the model, the uncertainty, errors and assumptions inherent in
the observations must be taken into account.

• Since a climate model is a stochastic system, it can only be analyzed statistically
and thus requires large number of samples in observations for it’s validation.
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Questions?
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